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Stability of spiral flow between concentric circular 
cylinders at low axial Reynolds number 
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The stability of a viscous liquid between two concentric rotating cylinders with 
an axial flow has been investigated. Attention has been confined to the case 
when the cylinders are rotating in the same direction, the gap between the 
cylinders is small and the axial flow is small. A perturbation theory valid in the 
limit when the axial Reynolds number R --f 0 has been developed and corrections 
have been obtained for Chandrasekhar’s earlier results. 

1. Introduction 
The stability of viscous flow between rotating co-axial circular cylinders with 

an axial flow has been considered theoretically by Goldstein (1937), Chandra- 
sekhar (1960, 1962), DiPrima (1960), Krueger & DiPrima (1963) and experi- 
mentally by Donnelly & Fultz (1960), Snyder (1962). While the experimental 
results are in general agreement with the theoretical predictions, there is some 
discrepancy. If the onset of instability occurs a t  a critical Taylor number T, 
(based on the angular velocity of the inner cylinder), Snyder’s experiment 
suggested a more rapid increase in T, with small increase of the axial Reynolds 
number R from its zero value than that predicted by Chandrasekhar (1960), who 
considered an averaged axial velocity, and DiPrima (1960), who considered both 
the effects of an averaged axial velocity and of a parabolic axial-velocity profile. 
In  an attempt to resolve this discrepancy, Chandrasekhar (1962) considered the 
case when the axial-velocity profile was parabolic and developed a perturbation 
theory which is valid in the limit R +- 0. He found that T, increased much more 
rapidly than predicted by DiPrima. Recently Krueger & DiPrima (1963) have 
re-examined this problem, and their new results, while agreeing with the earlier 
results of DiPrima, do not predict the rapid initial increase of the critical Taylor 
number with R as obtained by Chandrasekhar (1962). They also suggested that, 
while the perturbation procedure used by Chandrasekhar was suitable, in the 
actual computation not enough terms in the series had been retained to give the 
correct coefficient of R2. 

In  order to examine this difference, we have developed in 9 2 a formal perturba- 
tion theory different from that of Chandrasekhar. Our results are in excellent 
agreement with those of DiPrima, and Krueger & DiPrima. Finally, in $ 5  we 
have re-examined Chandrasekhar’s perturbation series and have explained the 
reasons why his result is incorrect. 
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2. The characteristic-value problem and the perturbation method 
Assuming that the gap between the cylinders is small, and that the cylinders 

rotate in the same direction, the eigenvalue problem for marginal stability takes 

(1)  
the form 

ID2 - - ip + 6iaRf(x)} v = U ,  (2) 

{D2 - a2 - i/3 + 6iaRf(x)} ( 0 2  - a2) u + 12iaRu = - Ta2v, 

where f ( x )  = t - x2, D = d/dx, T is the Taylor number, R is the axial Reynolds 
number, a is a dimensionless wave-number, and /3 is the dimensionless time 
c0efficient.f- The boundary conditions are 

u = D u = v = O  a t  x = & i .  (3) 

The homogeneous system of equations (1) and (2),  together with the boundary 
conditions (3), define a characteristic value problem. The flow is unstable or 
stable according as the imaginary part of p is less than or greater than zero. We 
shall consider the neutrally stable case when the imaginary part of /3 is zero. 
Thus for given a and R we have to find a real p for which T is real. The critical 
Taylor number for a given R is then given by the minimum of the characteristic 
values T as a function of a. 

We note that, when R = 0, equations (1) to (3) define the classical Taylor 
problem, which gives the critical Taylor number T, = 1707.8, with the critical 
wave-number a, = 3-12, and p = 0. Now, when R is small, we shall assume that 

T = T , , + B T ~ ~ + B ~ T ~ ~ + . . . ,  

p = € p l + € 2 / 3 2 +  ..., 
u = W,-tEU1+E2U2+ ..., 
v = 8,+Ev1+E2u2+ ..., 

where E = 6R, and W,, 8, are the characteristic functions corresponding to the 
lowest characteristic value To of the system of equations (1) and (2) when R = 0. 
Substituting for u, v, T ,  and /3 in equations (1) to (3), and equating coefficients 
of B, e2 gives, (0' - a2)'W, = - Too~280, (8) 

( 0 2  - a2) 8, = w,, (9) 
(02- q U 1  = - ~ , , a 2 ~ ,  - T,,av, + i~,w,, (10) 

( P - d ) V 1 =  Ul-tiM18,, (11) 
and ( D ~ - G ) Z U ~  = (12) 

(D2-a2)v2 = u2+iMlv,+i/328,, (13) 
I;, = {Bl - af (x)}  ( 0 2  - a2) - 2a, where 

Hl = p1-uf(x),  L2 = Pz(D2-a2). 

The above three systems of equations have to be considered together with the 
boundary conditions (3), where u and v have to be replaced by W, and O,, u1 and 
vl, u2 and v2, respectively. 

t For the derivation of equations (1) and (2) see DiPrirne (1960). 
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Now consider the eigenvalue problem for E = 0. We shall write the system of 
equations (1) to (3) for E = 0 as 

(02- a,), W = - T,a28, 

(0, - a,) 8 = W ,  
with the boundary conditions 

W = D W = 8 = 0  at x=+&. (16) 

It is known that the system of equations (14) to (16) is self-adjoint in the sense 
that there exists a relationship of duality between the proper solutions belonging 
to different characteristic values, i.e. if ?,Sj and Wk, 8, are the proper solutions 
corresponding to the characteristic values q, Tk, respectively, then 

Besides, it  can be shown (see, for example, DiPrima 1961) that the eigenvalues 
To are real and positive. Further, the lowest eigenvalue To, corresponds to even 
eigenfunctions Wo and 8,. Since the original system of equations (1) and (2) is 
even in x, and as we are interested in the perturbation of the lowest eigenvalue 
To, corresponding to even functions W,, So, so we need only consider the even 
solutions for u,, ZJ,, and u,, v,. Now the first three eigenvalues Too, T,,, T,, of the 
system (14) to (16), corresponding to even eigenfunctions W,, 8,; W,, 8,; W,, 8, 
respectively, for a = 3-12 are 

To, = 1707.8, T,, = 172,362-6, T,, = 2,507,577.0. 

The eigenfunctions Wo and 8, are given by Chandrasekhar (1961) and the functions 
W,, 8,, W,, 8, are found easily by the formulas given by him (see Chandrasekhar 
1961, pp. 36 to 39). 

3. Solution 
It has been shown by Krueger & DiPrima (1963) that for small values of 

R (R < 5) the critical wave-number a, does not change from its value 3.12 for 
R = 0. So in the subsequent analysis we shall take a = 3-12. 

Now, to solve the system (10) and (ll),  we shall assume that u1 and u1 can be 
expanded in terms of the even proper solutions q. and 8, respectively of the 
system (14) and (15). Thus we write 

m m 

1 1 
u1 = 2 A j T ,  w1 = C BjOj. 

The boundary conditions are automatically satisfied. Substituting for u1 and v1 
in equations (10) and (1 l), multiplying (10) by and (1 1) by 8, and integrating 
with respect to 5 from - & to & we shall get 

sW,L, W, d x  - To,@ 18flM18fldx 

a2 8, dx 
To, = i 9 (19) 
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where all the above and subsequent integrals have to be evaluated with respect 
to x from - 4 to 4. 

From (19) it is obvious that To, is imaginary. But since we are interested in 
real values of T ,  so To, must equal to zero, i.e. 

~W,L1W,dx-T0,a2~0,M10,dx = 0, 
which gives 

(23) 

Similarly, to solve the system (12) and (13), we assume that 

00 m 

u2 = v2 = C Dj 0,. 
1 1 

Then we obtain 

+ 

A, 1% L, q dx - To0a2Bj JOoNl 0,dx 
i+O a2JW,BOdx * (26) 

C, and Di can also be evaluated in the usual manner. 

we conclude that To2 is real if and only if 
Now, since T has to be real, To, must be real. So from (26), using (20) and (21), 

JW, L2 W,dx - b2 Too a2 10idx = 0. 

/3z/[(DW,)2 + a2K2 + To0a2@] dx = 0. This gives 

Hence = 0. Therefore 

(27) 
where the A,, Bj are given by (20), (21).t We may also write 

1% L,u, dx  - Tooa2 JSoMl v1 dx 

a2 it";, so dx 
To, = i 

This solves the problem of evaluating the lowest characteristic value To of the 
system of equations (1) to (3), correct to the order of €2. 

t We should note that from physical reasoning T should be an even function and P an 
odd function of R, which agrees with our results. 
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4. Numerical values 
First, p, may be evaluated from the equation (24) by using the exact eigen- 

(29) functions W, and So. We find p, = 0.608. 

Next, to determine Toz, it is necessary to compute the series in (27). So we must 
know the eigenfunctions y, 0, corresponding to q, (j = 1,2, ...). We have com- 
puted the even eigenfunctions W,, e,; W,, 8, and W,, e2. This is sufficient for our 
purposes since qo is rapidly increasing, and A, and 23, are proportional to 
(qo- To0)-l, for example (T3,- Too)-, N O( lo-’). Thus truncating the series on 
the right-hand side of (27) after the second term we obtain 

36T,, = 0.9253 + 0.3794 + 0.0135 + . . . = 1.32. (30) 
We have also evaluated To, and pl in another way. We have assumed To, = 0 

in the system of equations (10) and (1 l), and have solved the system for u1 and vl 
numerically by the Runge-Kutta method using two step sizes, 0.05 and 0.02. 
Then we evaluated the integrals on the right of (28) by Simpson’s rule. The 
results of these calculations are: 

8, = 0.608, (31) 
36T0, = 1.32 for h = 0.02, 

= 1.30 for h = 0.05, 
where h is the step size. Hence we conclude that, correct to R2, 

p = 3.6512, T, = 1707.8+ 1.32R2, 

a, = 3.12, (33) 
which are in excellent agreement with the values obtained by DiPrima (1960) 
and Krueger & DiPrima (1963). For example, they find, at R = 0,1,2,5; 
T, = 1708,1709,1713,1741; /? = 0,3.65,7-30,18.25, respectively, which can be 
seen to agree excellently with our result. On the other hand the result is con- 
siderably different from that obtained by Chandrasekhar (1962), who found 

p = 3.6312, T, = 1708+26.5R2 for a = 3.1. (34) 
In the following section we have re-examined Chandrasekhar’s solution and have 
found that, if we keep the terms of the relevant order, we get results close to ours. 

5. Re-examination of Chandrasekhar’s perturbation 
Let us consider equations (1) to (3). Again u, v, T are expanded as in equations 

(6), (7) and (4), but we keep /3 fixed. Then p will be determined from the condition 
that T is real. Using equations (a), (6) and (7) in (1) to (3) we shall obtain three 
sets of equations for determining Too, To, and To,, which are now complex-valued 
functions of 8. Proceeding exactly as in the 9 3t we can determine Too, To,, To, 
as functions of 8. Chandrasekhar determined only To, and To, for a = 3.1 finding 

To,a2 = (1.6412 - 0.002163p2) x lo4- 1.267 x 103ip, (35) 
Tola2 = (7*989/3+ 247.3i)a. (36) 

t The orthogonality condition (17) still holds although w,, 0, are now complex-valued 
functions of B and x. 
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Now, if we neglect the terms containing e2 and higher powers of e in (4) before 
we substitute values of Too and To, from (35) and (36) and impose the condition 
that T is real, we obtain equations (34). 

However, as was pointed out by Krueger & DiPrima (1963), upon examining 
(4) we find that the expression for T, would be correct to terms of O(e2), i.e. correct 
to terms of O(R2), if, and only if, TO2 does not have a real part which is independent 
of /3. If To, has a real part independent of p, then clearly this will contpibute to T 
correct to terms O(R2). To see if this could explain the discrepancy in Chandra- 
sekhar’s calculations, we have calculated both T,,, and To, when = 0, and we 
find that, for /3 = 0, Tola = 247.13&, which checks with equation (36) and 
36TO2 = - 24.9. Adding the correction from To, in (34) we get, correct to O(e2), 

~3 = 3-63R, T, = 1708+ 1-6R2, a = 3.1. (37) 

Thus it would appear that, while the perturbation procedure suggested by 
Chandrasekhar is correct, considerable care must be taken in using it to ensure 
that at a certain order all terms have been evaluated. 

In  conclusion I express my deep gratitude to Professor R.C.DiPrima for 
suggesting this problem and for his many valuable comments and suggestions in 
the course of this work. I also wish to express my thanks to  Mr A. Gross for help 
in programming the Runge-Hutta method and to Mr R. Grannick for checking 
some of the calculations. This work has been supported by the National Science 
Foundation grant GP- 14 a t  the Mathematics Department, R.P.I. 

Note added in proof. There is one important point in favour of doing the 
perturbation in the above way and that is that one can extend the perturbation 
series in a straightforward way to include higher powers of R. This is what 
one desires to have in a perturbation series. On the other hand an extension of 
Chandrasekhar’s perturbation series to include higher powers of R becomes 
rather involved and complicated. In  fact, it  is prohibitive. 
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